(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
ack(Cons(x, xs), Nil) → ack(xs, Cons(Nil, Nil))
ack(Cons(x', xs'), Cons(x, xs)) → ack(xs', ack(Cons(x', xs'), xs))
ack(Nil, n) → Cons(Cons(Nil, Nil), n)
goal(m, n) → ack(m, n)
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
ack(Cons(x, Cons(x'30_0, xs'31_0)), Nil) →+ ack(xs'31_0, ack(Cons(x'30_0, xs'31_0), Nil))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [xs'31_0 / Cons(x'30_0, xs'31_0)].
The result substitution is [x / x'30_0].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
ack(Cons(x, xs), Nil) → ack(xs, Cons(Nil, Nil))
ack(Cons(x', xs'), Cons(x, xs)) → ack(xs', ack(Cons(x', xs'), xs))
ack(Nil, n) → Cons(Cons(Nil, Nil), n)
goal(m, n) → ack(m, n)
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
ack(Cons(x, xs), Nil) → ack(xs, Cons(Nil, Nil))
ack(Cons(x', xs'), Cons(x, xs)) → ack(xs', ack(Cons(x', xs'), xs))
ack(Nil, n) → Cons(Cons(Nil, Nil), n)
goal(m, n) → ack(m, n)
Types:
ack :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
ack
(8) Obligation:
Innermost TRS:
Rules:
ack(
Cons(
x,
xs),
Nil) →
ack(
xs,
Cons(
Nil,
Nil))
ack(
Cons(
x',
xs'),
Cons(
x,
xs)) →
ack(
xs',
ack(
Cons(
x',
xs'),
xs))
ack(
Nil,
n) →
Cons(
Cons(
Nil,
Nil),
n)
goal(
m,
n) →
ack(
m,
n)
Types:
ack :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(Nil, gen_Cons:Nil2_0(x))
The following defined symbols remain to be analysed:
ack
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol ack.
(10) Obligation:
Innermost TRS:
Rules:
ack(
Cons(
x,
xs),
Nil) →
ack(
xs,
Cons(
Nil,
Nil))
ack(
Cons(
x',
xs'),
Cons(
x,
xs)) →
ack(
xs',
ack(
Cons(
x',
xs'),
xs))
ack(
Nil,
n) →
Cons(
Cons(
Nil,
Nil),
n)
goal(
m,
n) →
ack(
m,
n)
Types:
ack :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(Nil, gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.